why is vepp.wr.usgs.gov not available?
6856:23089
Share
Brief three-line description of the activity or assignment and its strengths (you will have an opportunity to expand on this description later in the form):
This activity is a homework exercise with an introductory classroom lecture and demonstration component. It may be used in large lecture classes and does not require students to have access to computers in the classroom. Students are asked to use the VALVE interface to retrieve, plot and interpret tilt time series and vector maps for inflation/deflation events at Pu'u 'Ō'Šin the past and possibly present.
This is a work in progress, not yet tested in a classroom setting, and examples of a PowerPoint lecture and pdf homework assignment will be uploaded before the start of Spring quarter 2011. All data required is currently already available from the VALVE interface.
Briefly describe the content/concepts goals for this activity (e.g., those involving pure vs. simple shear, deformation mechanisms, kinematic analysis, accurate description of samples):
Students should be able to:
Briefly describe the higher order thinking skills goals for this activity (e.g., those involving analysis of data, formulation of hypotheses, synthesis of ideas, critical evaluation of competing models, development of computer or analog models):
Students should be able to:
Briefly describe any other skills goals for this activity (e.g., those involving writing, operating analytical equipment, searching the WWW, oral presentation, working in groups):
Students should be able to:
What is the type of activity (a problem set, classroom activity, lab activity, project, field activity, and/or a writing activity)?
The activity is a problem set, to be assigned after an introduction in the classroom in a lecture/demonstration format.
What is the class type (small intro lecture, large intro lecture, or UD/grad course; disasters, hazards, field course, or intro geology; with or without computers; community college)?
Relatively large upper division General Education lecture course on Natural Disasters, without computers.
Briefly describe the type(s) and level(s) of course in which this activity or assignment could be used (e.g., undergraduate required course in structural geology, introductory physical geology course for non-majors, graduate level seminar on geochemistry):
An upper division general education course.
Briefly describe or list the skills and concepts that students must have mastered before beginning the activity:
The exercise should be part of a general discussion of volcano monitoring. The students should have a basic background in volcanoes, magma chambers and magma movement, volcanic hazards. It would be useful if students already have some experience in accessing datasets through the internet.
Briefly describe how the activity is situated in your course (e.g., as a culminating project, as a stand-alone exercise, as part of a sequence of exercises):
As one of a series of homework exercises assigned during the quarter.
Full length description:
The following activity would be part of a general discussion of the importance of (real-time) volcano monitoring and the different types of tools that are available to geoscientists and the types of signals that may occur prior to eruption events. I personally will be emphasizing the high-tech and near real-time nature of the data/instruments, and the fact that it may also show volcanic processes at work that are not visible to the naked eye. It is essential that the instructor carefully covers the material on The VEPP Tilt Page and the VEPP Inflation-Deflation Example prior to assigning the exercise, and also demonstrates the use of the VALVE interface.
The following paragraphs describe the material that should be covered by the instructor in the classroom.
Discuss how tilt meters work, using the information on The Tilt Page. Another description of tilt meters can be found at Tunnel tiltmeters, Pozzuoli, Italy. A useful (but possibly time-consuming) activity would be the Building of a Water Tube Tilt Meter. A somewhat shorter alternative demonstration is [link http://www.earthlearningidea.com/PDF/Tiltmeter_English.pdf When will it blow? – How a simple tiltmeter can demonstrate the bulging of a volcano before eruption'].
Discuss the Inflation-Deflation Example, in particular the two animations that show the time series of tilt that are expected for these types of events. In addition to the Kilauea example, possibly show the example of Mount St. Helens. Other useful animations may be found on the IRIS volcano Monitoring page.
Show the tilt station location map on The Tilt Page and discuss the meaning of the radial and tangential component in this context.
Cover the example Deflation-Inflation (DI) event at the bottom of The Tilt Page. Explain what the graphs show (refer back to tilt station map) and the possible problem associated with heavy rainfall. Use worksheets and Think-Pair-Share questions on graph reading and interpretation. Cover how sensitive these tilt meters are, by discussing the units shown on the plots (microradians), translating them into degrees, and drawing some example angles on the board. Could include the use of the (relatively static) plot on the Kilauea update page to further illustrate the second animation of the time lag of deformation between Kilauea Summit and Pu'u 'Ō'ō, if it shows a DI event at that point in time, or use the following saved image:
Demonstrate the use of the VALVE interface by recreating the example graph at the bottom of The Tilt Page in the classroom, show how to use the cursor to select a time window within a time series graph to "zoom in".
The homework exercise will incorporate the following questions/assignments:
Lecture material on tilt meters and Pu'u 'Ō'ō should be prepared, using the VEPP website, in particular The Tilt Page and Inflation-Deflation Example.
Please describe any helpful examples of this activity, as well as any potential variations on this theme:
Depending on time and level of interest, other datasets from VALVE, such as seismic amplitudes and GPS, may be incorporated in this exercise as well.
What tips might you offer to other educators planning to use this activity?
The instructor should examine the recent data from the VEPP Web site before attempting this exercise, to make sure there are no unexpected issues with this data that would make interpretation by students difficult.
The homework exercise will be graded. Feedback will be encouraged through the use of informal mid-quarter class evaluation forms.
Please list any supporting references or URLs for this activity:
VEPP website (password required, contact mpoland "at" usgs.gov)
Building of a Water Tube Tilt Meter
Tiltmeters help scientists predict eruptions at Mount St. Helens
Events Leading Up to the May 18, 1980 Eruption of Mount St. Helens
IRIS volcano Monitoring page (with animations)
Tunnel tiltmeters, Pozzuoli, Italy
GRL paper on Montserrat real-time tilt measurements and its use in eruption forecasting
6856:23089
Share