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More Mapping with Vectors  
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Tampa FL 33620 
 
Topics this issue --  
• Mathematics: general – significant figures;  geometry – area of triangles;  vectors – 

addition, cross- product, dot product;  algebra – linear equations, Cramer's rule;  
trigonometry – law of sines, law of cosines;  spreadsheets. 

• Geology: bearing and azimuth; triangulation. 
 
 
Introduction 
 Triangulation is so important that the word is included in general dictionaries: 
 

"triangulation … trigonometric operation for finding a position or location by 
means of bearings from two fixed points a known distance apart." 
  Merriam-Webster's Collegiate Dictionary, Tenth Edition, 1994. 

 
The essential ingredients are shown in Figure 1.  O and P are the two fixed points a known 
distance apart.  The line OP is a baseline.  The two bearings are the directions of the sightings 
from O to A and from P to A.  The location of A is determined as the intersection of lines OA and 
PA. 
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Figure 1.  Definition diagram for the essential 
ingredients of a triangulation problem. 

 
 An example is shown in Figure 2.  The baseline is 51.2 m long and extends in a direction 
N65E (AZ = 65°, see Appendix).  The bearing from O to A is N10E (AZ = 10°), and the bearing 
from P to A is N5W (AZ = 355°).  The question is, Where is A?   



 The answer is commonly obtained graphically by drawing the baseline to scale and using 
a protractor to place OA and PA.  With the scale drawing of triangle AOP, one can measure the 
distance of A from O and the distance from P to A.  Thus, in this example, answers to the 
question are, A is 190 m from O in a direction N10E and (or) 160 m from P in a direction N5W. 
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Figure 2.  Map showing information for a 
sample triangulation problem. 

 
 The uncertainty in the result depends not only on the accuracy and precision of the 
original field data but also on the accuracy and precision of the graphical work.   The graphically 
determined result, therefore, is known less well than the original data. 
 
Trigonometric Solution 
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Figure 3.  Map showing angles used in the 
law of sines to find the position of A.  E and 
S indicate directions to the east and to the 
south, respectively, and N1 and N2 indicate 
the direction to north. 

 
 The same results can be calculated using trigonometry as shown in Figure 3.  The 
direction of the baseline OP and the two bearings can be used to find all the angles of the 
triangle.  Thus: 



• From the fact that OP extends in the direction N65E, ∠POE must be 25°.  From the 
fact that OA is N10E, ∠N1OA is 10°. Then, ∠AOP is 55° because ∠N1OA, ∠AOP, 
and ∠POE must sum to 90°. 

• From the fact that ∠ N1OA is 10o, ∠SAO also is 10°, because the two angles are 
formed by the intersection of OA with two parallel lines.  For the same reason, ∠PAS 
is 5° because ∠APN2 is 5°.  Then, ∠PAO is 15° because it is the sum of ∠SAO and 
∠PAS. 

• From the findings that ∠AOP is 55° and ∠PAO is 15°, then ∠OPA must be 110° 
because the three angles must sum to 180o. 

 
The angles of the triangle can be combined with the known length (OP) to find the two 

unknown lengths (OA and PA) by using one of the most helpful relationships in trigonometry, 
the law of sines.  According to the law of sines, the ratio of the sine of the vertex angle of a 
triangle to the length of the opposite side is the same for all three vertices. Thus if α, β, and γ are 
the angles at A, B, and C, respectively, and if a, b, and c are the lengths of the sides opposite α, 
β, and γ, respectively, then the law of sines states: 
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In the notation of Figure 3, the law of sines is: 
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Solving for OA and PA, 
 

  2.51
15sin

110sin
∗= o

o

OA m = 185.8915 m.     (3a) 

 

and  2.51
15sin
55sin

∗= o

o

PA m = 162.0460 m.      (3b) 

 
(I am using excess digits in the results in Equations 3, because I intend to do more with the 
numbers in the next section.)   

The calculated results of Equations 3 have no more uncertainty than the uncertainty 
produced from the uncertainties in the original length (51.2 m) and angles (10° and 5°).  
Interpreting these data to mean OP = 51.20 ± 0.05 m, ∠ N1OA = 10.0° ± 0.5°, and ∠APN2 = 5.0° 
± 0.5°, and using the rules of error propagation (assuming no partial cancellation; Taylor, 1997), 
the results are OA = 185.9 ± 12.9 m and PA = 162.0 ± 11.7 m.  With this much propagated error, 
it is inappropriate to state the result with more than two significant digits (i.e., OA = 190 m, and 
PA = 160 m), and even that understates the uncertainty.  Clearly the effects of the uncertainty in 
the original data are large enough that one would not want to add more uncertainty by using an 



inexact technique of find OA and PA – which is the case when one uses graphical techniques 
where analytical ones are available. 
 
Vectors and Components 
 From the law of sines and the original data, we know all the sides and all the angles of the 
triangle OPA.  This means that we know the location of each vertex relative to the location of 
each of the other vertices.  For example, P is 51.2 m in a direction N65E from O, and P is also 
185.8915 m in a direction of S5E (AZ = 175°) from A (keeping extra digits for future 
calculations). Similarly, the location of O can be stated as a distance and direction from P and 
from A, and A can be stated as a distance and direction from O and from P (the latter pair of 
distances being the solution we obtained in the preceding section).    
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Figure 4.  Map showing vectors giving the 
position of P relative to O, A relative to O, 
and A relative to P. 

 
 These relative locations can be considered as vectors inasmuch as they are directed 
distances having magnitude (length) and direction.  Thus vO-P, read "vector from O to P," is the 
quantity that has magnitude 51.2 m and direction N65E.  Similarly, vO-A has magnitude 185.8915 
m and direction N10E, and vP-A has magnitude 162.0460 m and direction N5W.  These three 
vectors are shown in Figure 4. 
 While geologists give directions as azimuths or bearings, the mathematics convention for 
stating the direction of a vector is to use θ, measured counterclockwise from the x-axis 
(Appendix 1).  With this convention, and aligning the east and north directions with the x- and y-
axes, respectively, the three vectors of Figure 4 are: 
 

• vO-P, with 51.2 m and direction θ  = 25°; 
• vO-A, with 185.8915 m and direction θ  = 80°; 
• vP-A, with 162.0460 m and direction θ  = 95°. 
 
For mathematical manipulations (hence problem solving), it is usually more convenient 

to express vectors in terms of their components (see Computational Geology-4, Mapping with 
vectors, Jan. 1999).  For the two-dimensional vector v (Fig. 5) 

 



 v = vx i + vy j ,        (4) 
 

where vx and vy are the x-and y-components, respectively, i and j are the unit vectors in the x- and 
y-directions, respectively, and the + signifies vector addition (because vxi and vyj are vectors, 
each being the scalar component multiplied by a unit vector).  As shown in Figure 5, the 
components, vx and vy are related to the magnitude and direction of v by: 
 
  vx = |v| cos θ         (5a) 
  vy = |v| sin θ         (5b) 
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Figure 5.  Sketch showing the components of 
a vector. 

 
Going the other way, the magnitude and direction of v can be found from its components by 
 
  |v| 22

yx vv +=          (6a) 
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One must be careful using the inverse tangent in Equation 6b, because the tangent has a period of 
only 180° (Appendix). 
  

vector magnitude (m) θ (deg) vx (m) vy (m) 
vO-P         51.2 25   46.4030   21.6381 
vO-A 185.8915 80   32.2797 183.0674 
vP-A 162.0460 95 –14.1232 161.4293 

  Table 1. Vector components from the law of sines (Fig. 3) 
 
 The components of the vectors in Figure 4 are found from Equations 5 and listed in Table 
1.  With these components, the vectors are:  

• vO-P = 46.4030 i + 21.6381 j ;       (7a) 
• vO-A = 32.2797 i + 183.0674 j ;       (7b)  
• vP-A = -14.1232 i + 161.4293 j .       (7c) 



 
(Again, the coefficients in Equations 7 contain an absurd number of digits; I am carrying them in 
order to compare results of different methods.) 

In words, the components of Equation 7 say that one can get from O to P by going 
46.4030 m east and then 21.6381 m north. Alternatively, one can say that P is 46.4030 m east 
and 21.6381 m north of O.  Similarly, A is 32.2797 m east and 183.0674 m north of O, and A is 
14.1232 m west and 161.4283 m north of P. 
 As shown in Figure 4, one can get from O to A also by going from O to P, and then from 
P to A.  Mathematically, this amounts to adding the vectors, 
 
  vO-A = vO-P + vP-A .        (8) 
 
Vector addition is easily accomplished by adding the components.  Thus, 
 

vO-A = (46.4030 - 14.1232) i + (21.6381 + 161.4293) j,   (9) 
 

which produces Equation 7b. 
 
Coordinates 

The position of every point in a mapped area can be stated in terms of its eastward and 
northward distances (displacements) from any other point in the area.  If one of these points is 
taken as a reference – a local benchmark – then these eastward and northward displacements are 
the x- and y-coordinates, respectively, relative to a coordinate origin at that benchmark. For 
example, if O is taken as the local benchmark (i.e., the local origin), then the coordinates of P 
and A are xP = 46.4030 and yP = 21.6381, and xA = 32.2797 and yA = 183.0674, respectively.  
Alternatively, if P were the local benchmark, the coordinates of O and A would be xO = –46.4030 
and yO = –21.6381, and xA = –14.1232 and yA = 1613.4293. (Note that one cannot think of 
coordinates independently of the origin, which is the point of reference.) 
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Figure 6.  Graph showing information to determine 
position of A using linear equations. 



 
 Relative to a coordinate origin at O, the x- and y-coordinates of A are 21.6381 and 
32.2797, as has just been stated.  This is a perfectly acceptable answer to our original question 
(Where is A?) if units (m) are added to the numbers.  The route we took to obtain this answer 
involved finding the length OA from the law of sines and, then, the components of the vector   
vO-A from its magnitude and direction. The coordinates xA and yA can also be found directly.   

Each of the bearings is a line of sight, and we can find the equation of those lines.  The 
location of Point A, which is at the intersection of these two lines, can be found by solving the 
two simultaneous equations for the point they have in common (xA and yA).  Thus, we need to 
find (Fig. 6): the equation of the line that passes through (0, 0) and (xA and yA); the equation of 
the line that passes through (46.4030, 21.6381) and (xA and yA); and the solution of those two 
simultaneous equations. 

The first part of the problem is an exercise in school algebra (Fig. 7): What is the 
equation of a line given the slope (m) and the location of one of the points (x1, y1)?  We know the 
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Figure 7.  Graph showing the essentials of a two-
point problem. 

 
slope of the line because we know its bearing.  The slope of the line given its mathematical 
direction (θ) is 

 
 θtan=m .         (10a) 
 

Working with azimuths (AZ), it is more convenient to use  
 

  
)tan(

1
AZ

m = ,         (10b) 

 
which follows from Equations A1 (Appendix) and 10a. 

With m, the equation of the line can be found by rearranging the equation of the slope, 
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to produce 
 



  ,        (11b) )( 11 mxymxy −+=
 
from which, the intercept is 
 
  yintercept = y1 − mx1 .        (12) 
 

Turning to Figure 1, let x1 = xO and y1 = yO; then with Equations 11a and 12, the line from 
O through A is: 

 
  OAOOOA xyxy θθ tantan −+= ,      (13a) 
 
where θOA is the mathematical direction from O to A.  Similarly, with x1 = xP and y1 = yP, 
Equations 11a and 12 produce the line from P to A as 
 
  PAPPPA xyxy θθ tantan −+= ,      (13b) 
 
where θPA is the mathematical direction from P to A. With θOA = 80°, xO  = 0,  yO = 0, θPA = 95°, 
xP  = 46.4030, and yP = 21.6381 (Fig. 6), the equations of the two lines are 
 
  ,         (14a) xy 6712.5=
 
for OA, and 
 
  ,       (14b) 00.5524295.11 +−= xy
 
for PA. 
 The problem now has been reduced to an exercise in solving two simultaneous equations 
in two unknowns, x and y (Fig. 8).  This can be done easily by using Cramer's rule (see 
Computational Geology-12, Cramer's rule and the three-point problem, Sept. 2000).  First, the 
equations need to be rearranged to Cramer's rule form: 
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Then, the answers can be written down immediately from  
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where D, Dx, and Dy are the determinants 
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Figure 8.  Graph showing the two lines that find that 
the position of A. 

 
 
 In this case, the simultaneous equations in Cramer's rule form are: 
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The solution determinants, then, are: 
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The solution is 
 

  279.32
1007.17

00.552
=

−
−

=x ,       (20a) 

 

and  063.183
1007.17

51.3130
=

−
−

=y .       (20b) 

 
These values are xA and yA, respectively, the point A where the lines cross (compare with Table 1, 
vO-A). 
 
A Mapping Problem 
 Determining the coordinates of the various points of interest in a mapped area opens the 
door for calculation of many other quantities.  For example, consider this problem: Suppose A in 
Figure 2 is simply the first of four corners of a parcel of land.  Suppose that just as you can see A 
from O and P, you can also see the three other corners of the property from O and P.  Suppose 
you make the sightings on these other corners, and the data are as in Figure 9.  : 
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Figure 9.  Sketch showing sightings to locate the 
four vertices of a quadrilateral from a single baseline 
(OP). 

 
Then: 

• What is the area of the parcel of land (ABCD)? 
• What is the perimeter? 
• What are the angles at the four distant corners? 

 
Understanding the Problem and Devising a Plan.   

Figure 9 shows the direction data.  Figure 10 shows the location information: two points 
(O and P) whose location is known (again, with excess precision), and four points (A, B, C, and 
D) whose location must be learned from the sightings.  If the coordinates of these four points 



were known, one could plot their positions on graph paper, connect the dots and answer the 
questions graphically: 

• By counting the squares within the quadrilateral, ABCD. 
• By measuring the length of all the sides. 
• By measuring the angles with a protractor. 
If the answers can be determined graphically, they can also be determined using vectors.  

Specifically, the answers to our questions can be found: 
• By using the cros-product of vectors to determine areas (Computational Geology 14, 

The vector cross-product and the three-point problem, Jan. 2001). 
• By finding the magnitude of vectors (Equation 6a) to determine lengths. 
• By using the dot product of vectors to determine angles (CG-4). 

We will take them one by one. 
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Figure 10. Sketch showing the coordinates of the end-points 
of the baseline and the vertices of the problem quadrilateral.  
Extra digits for P for purpose of calculation. 

 
 The cross-product and the area of ABCD.  The magnitude of the vector cross-product 
u × v is the area of the parallelogram formed by u and v (Fig. 8 of CG-14). Therefore, the areas 
of triangle DBC (ADBC) and triangle DAB (ADAB) in Figure 11 are B

 
  ADBC  =  |(vD-C × vD-B ) | /2       (21a) 
and   ADAB  =  |(vD-B × vD-A )| / 2 ,       (21b) 
 
respectively, and the area of the quadrilateral (AABCD) is their sum 
 
  AABCD  =  ADBC  +  ADAB .       (22) 
 
For vectors u and v in the xy-plane and arranged such that u rotates counterclockwise through an 
acute angle into v (i.e., such that the direction of u × v is parallel to the z-axis, according to the 
right hand rule – as is the case here), |u × v| is calculated easily from the determinant consisting 
of the vector components: 



 

  |u × v| = xyyx
yx

yx vuvu
vv
uu

−= .      (23) 
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Figure 11.  Sketch showing vectors to find the area 
of the quadrilateral using the cross-product 
(Equations 21 and 22). 

 
 
 The magnitude of vectors and the perimeter of ABCD.  The perimeter of ABCD 
(PABCD) is the sum of the four vectors that go from one corner to the next around the quadrilateral 
(Fig. 12): 
 
  PABCD = | vD-A | + | vA-B | + | vB-C | + | vC-D | .     (24) 
 
The individual magnitudes are calculated easily from the Pythagorean sum of the vector 
components (Equation 6a). 
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Figure 12.  Sketch showing the vectors to find the 
perimeter of the quadrilateral using vector 
addition (Equation 24). 



 
 The dot product of vectors and the angles at A, B, C and D.  The dot product u⋅v, is 
the scalar  
 
  u⋅v  = |u| |v| cos θ ,        (25) 
 
where θ is the angle formed by u and v.  Thus, for example (Fig. 13),  
 
  vD-C ⋅ vD-A = | vD-C | | vD-A | cos θADC .     (26)  
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Figure 13. Sketch showing vectors to find the 
vertex angles at B and D using the dot 
product (Equation 26). 

 
Rearranging Equation 26 produces an easy way to calculate θADC.  The dot product u ⋅ v is easily 
found from the components of u and v by (Equation 32 of CG-4): 
 
  u ⋅ v = .        (27) yyxx vuvu +
 

Getting and using the components.  It is evident from Equations 6a, 23 and 27 that we 
need to be able to write down the components of all the vectors in order to carry out the vector 
calculations.  The components are easily found from the coordinates of A, B, C and D.  Thus, as  
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Figure 14.  Diagram showing 
the terms in Equation 28a. 



 
in the general case shown in Figure 14, the vector v from (x1,y1) to (x2, y2) is simply 
 
  v = (Δx) i  + (Δy) j = (x2 – x1) i + (y2 – y1) j ,     (28a) 
 
where Δx and Δy are the components vx and vy, respectively.  For our problem involving vectors 
that go from one vertex to another around or across the quadrilateral, we can use a notation for 
the components as in the following example for the vector from A to B  
 
  vA-B = ΔxAB i + ΔyAB j .       (28b) 
 
 Then from Equations 21, 22, and 28b, the area AABCD is 
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From Equations 6a, 24 and 28b, the perimeter PABCD is 
 

22222222
CDCDBCBCABABDADAABCD yxyxyxyxP Δ+Δ+Δ+Δ+Δ+Δ+Δ+Δ= .  (30) 

 
(Note,  means  and not .)  Finally, from Equations 6a, 26, 27 and 28b, 
the angle at the southwest corner θ

2
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A plan.  The problem can be solved by carrying out the following three-step plan: 
 
1. Find the coordinates of the four vertices by triangulation. 
2. Find the coordinates of the vectors that go from vertex to vertex around the perimeter 

and across the diagonals using appropriate forms of Equations 28. 
3. Do the vector arithmetic.  Specifically: 

a. Find the area from the cross-products using Equation 29. 
b. Find the perimeter from the magnitude of vertex-to-vertex vectors using Equation 

30. 
c. Find the vertex angles from the dot product using Equation 31 for the southwest 

vertex and similar equations for the other vertices. 
 
Carrying out the Plan 
 Figure 15 shows a spreadsheet that makes the calculations for the first part of the 
problem: the four triangulation exercises of Figure 9.   
 



  

B C D E F G H I J
2 A MAP PROBLEM USING VECTORS 
3 page 1: Triangulating the four corners 
4 DATA
5 A.  Coordinates of baseline points (m) x y
6 O 0 0
7 P 46.4030 21.6381
8 B.  Sightings to the four corners (Azimuths in degrees)
9 A B C D
10 From O 10 30 140 190
11 From P 355 25 150 205
12
13 FINDING COORDINATES OF THE CORNERS
14
15 A.  Equations of lines from baseline points to corners
16 slope intercept slope intercept
17 O to A 5.6712 0 O to C -1.1918 0
18 P to A -11.4295 552.00 P to C -1.7320 102.01
19 O to B 1.7320 0 O to D 5.6713 0
20 P to B 2.1445 -77.87 P to D 2.1445 -77.87
21
22 B.  Equations into Cramer's Rule form 
23 x -coeff y -coeff right side x -coeff y -coeff right side
24 O to A 5.6712 -1 0 O to C -1.1918 -1 0
25 P to A -11.4295 -1 -552.00 P to C -1.7320 -1 -102.01
26 O to B 1.7320 -1 0 O to D 5.6713 -1 0
27 P to B 2.1445 -1 77.87 P to D 2.1445 -1 77.87
28
29 C.  Determinants for Cramer's Rule
30 For A: D 5.671243 -1 For C: D -1.19 -1
31 -11.42954 -1 -1.73 -1
32
33 Dx 0 -1 Dx 0 -1
34 -552.003 -1 -102.01 -1
35
36 Dy 5.671243 0 Dy -1.19 0
37 -11.42954 -552.00 -1.73 -102.01
38
39 For B: D 1.73 -1 For D: D 5.67 -1
40 2.14 -1 2.14 -1
41  
42 Dx 0 -1 Dx 0 -1
43 77.87 -1 77.87 -1
44
45 Dy 1.73 0 Dy 5.67 0
46 2.14 77.87 2.14 77.87
47
48 D.  Results x y x y
49 A 32.279 183.064 C 188.805 -225.008
50 B 188.804 327.018 D -22.081 -125.226  

 
Figure 15.  Spreadsheet for calculating the coordinates of the four 
vertices of the problem quadrilateral (four triangulation exercises). 

 
The data are in Rows 6-11.  The algorithm in the spreadsheet does the following: 

• Calculates the slope and intercept of the eight lines of sight in Rows 17-20 using 
Equations 10b and 12, respectively.  (The example in Equations 14 is in Columns D 
and E of Rows 17 and 18.) 

• Converts the equations of the lines from the slope-and-intercept form of Rows 17-20 
to the linear-coefficients form appropriate for Cramer's rule (Equations 15) in Rows 
24-27.  (The example in Equations 18 is in Columns C, D, and E of Rows 24 and 25.)   

• Forms the Cramer's rule determinants (Equations 17) in Rows 30-46.  (The  
determinants corresponding to Equations 19 are in the Block D30:E37.)   

• Calculates the ratios of determinants that produce the coordinates of A, B, C and D in 
Rows 49 and 50 (Equations 20).  (The result we obtained earlier for A is in Block 
D49:E49.) 

 



Figure 16 shows a spreadsheet that works out the rest of the problem 
 

 

B C D E F G H I J
2 A MAP PROBLEM USING VECTORS 
3 page 2: Finding the area, perimeter and vertex angles  
4 DATA
5 Coordinates of corners x y x y
6 A 32.279 183.064 C 188.805 -225.008
7 B 188.804 327.018 D -22.081 -125.226
8
9 FINDING THE POINT-TO-POINT VECTORS
10 peripheral x -cmpnt y- cmpnt x -cmpnt y- cmpnt
11 v A to B 156.53 143.95 v B to A -156.53 -143.95
12 v B to C 0.00 -552.03 v C to B 0.00 552.03
13 v C to D -210.89 99.78 v D to C 210.89 -99.78
14 v D to A 54.36 308.29 v A to D -54.36 -308.29
15
16 diagonals
17 v A to C 156.53 -408.07 v C to A -156.53 408.07
18 v B to D -210.88 -452.24 v D to B 210.88 452.24
19
20 FINDING DISTANCES FINDING DIRECTION
21 A to B 212.66 m (Using ATAN2 function)
22 B to C 552.03 m theta Azimuth
23 C to D 233.30 m A to B 42.60 47.40
24 D to A 313.05 m B to C -90.00 180.00
25 C to D 154.68 295.32
26 A to C 437.06 m D to A 80.00 10.00
27 D to B 499.00 m
28
29 Perimeter 1311 m
30
31 FINDING AREA
32
33 Triangle DCB: v D to C cross v D to B
34 Determinant Areas
35 210.89 -99.78
36 210.88 452.24 = 116414 58207 m2
37 Triangle CAB: v D to B cross v D to A
38 Determinant
39 210.88 452.24
40 54.36 308.29 = 40430 20215 m2
41
42 Total area 78422 m2
43
44
45 FINDING CORNER ANGLES
46 dot-prodct mag v1 mag v2 cos angle angle (deg)
47 NW v A to D dot v A to B -52888.3 313.0 212.7 -0.7945 142.60
48 NE v B to A dot v B to C 79466.4 212.7 552.0 0.6769 47.40
49 SE v C to B dot v C to D 55082.5 552.0 233.3 0.4277 64.68
50 SW v D to C dot v D to A -19298.2 233.3 313.0 -0.2642 105.32  

 
Figure 16.  Spreadsheet for calculating the length and direction of 
edges, perimeter, area, and vertex angles of the quadrilateral from 
the coordinates of the vertices. 

 
The coordinates of the four corners are repeated in Rows 6 and 7 from Figure 15. The algorithm 
does the following: 

• Calculates the components of the vertex -to- vertex vectors in Rows 11-18 using 
Equations 28 and the coordinates in Rows 6 and 7.  

• Calculates the magnitude of the vectors in Rows 21-27 using Equation 6a and the 
components in Rows 11-18.  

• Finds the direction of the peripheral vectors from the components in Rows 11-14 by 
using the cell formulas of Columns F and H of the spreadsheet in the Appendix. 

•  Finds the perimeter in Cell D29 by summing the magnitudes in Block D21:D24. 
• Calculates the area in Rows 33-42 by using Equation 29 and the components in Rows 

11-18.  



Calculates the vertex angles in Rows 47-50 using Equation 27 in Column E, Equation 6a 
in Columns F and G, and Equation 26 in Columns H and I, with the components in Rows 
11-14. 
 

The answers are shown in Cells I42, D29 and I47 to I50: the area is 78,422 m2, the perimeter is 
1311 m, and the four angles are 142.60°, 47.40°, 64.68°, and 105.32°.  Note that the four angles 
sum to 360°, as they should. 
 
Looking Back. 
 Some checks.  There are various things one can do to check the reasonableness of the 
answers.  The first thing is to draw the quadrilateral more carefully to scale using the coordinates 
and annotate the drawing with the calculated length and direction information (Fig. 17). Do the 
azimuths and relative magnitudes look right? 
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Figure 17.  Diagram of the quadrilateral 
drawn to scale to check for calculation 
errors. 

 
 In case it was not apparent before, it is obvious from Figure 17 that the western edge of 
the quadrilateral passes through the origin (O).  This result checks with the starting information: 
the azimuth from O to A is 10° and the azimuth from O to D is 190°.  Perhaps we should have 
spotted that when sketching Figure 9. 
 It is also evident from Figure 17 (and the x-coordinates in Cells E7 and I6 of Fig. 16) that 
the eastern edge runs due north-south.  That is so, if and only if  
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where θO-B and  θO-C refer to the directions of vO-B and vO-C , respectively.  Both ratios are 
−1.453. 
 Another test can be done easily by checking whether the calculated directions of the 
edges (Fig 16, Rows 23-26 of Column I) are consistent with the vertex angles (Fig. 16, Rows 47-



50 of Column I).   The relevant information is in Figure 18.  Consider the southeast vertex (C), 
for example.  The angle between the two labeled azimuths is 65°, which is the same as the vertex 
angle; the two must be the same because they are on opposite sides of intersecting lines.  The 
northeast and southwest vertices check out in the same way.  For the northwest vertex, the angle 
between the labeled azimuths is 37°, the supplement of the vertex angle (143°). 
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Figure 18.  Diagram used to compare 
direction information with vertex angles. 

 
 As a last check, we can determine the area of the quadrilateral trigonometrically using the 
information shown in Figure 19: the coordinates of the corners (Fig. 15, Rows 49 and 50) and the 
lengths of the edges (Fig. 16, Col. D, Rows 21-24).  
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Figure 19.  Diagram used to find the central 
angles about P and the area of the 
quadrilateral trigonometrically. Extra digits 
for purpose of comparison.   
 



 We can divide the quadrilateral into triangles radiating out from P.  The radiating legs 
can be found from the coordinates using the Pythagorean sum (Equation 6a): PA = 162.0429 m, 
PB = 336.9499 m, PC = 284.8028 m, and PD = 162.046 m. Then the four central angles at P can 
be calculated using the law of cosines: 

 
  ,       (33) γcos2222 abbac −+=
 
where γ is the included angle between sides a and b, and c is the side opposite.  (Let γ  = 90°, and 
Equation 33 reduces to the familiar Pythagorean theorem).  Thus, solving for γ and plugging in 
the lengths for PA, PB, PC, and PD, the four angles are (clockwise, starting from the northern 
triangle): ∠APB = 30.000°, ∠BPC = 125.000°, ∠CPD = 55.000°, and ∠DPA = 150.000°).  
These angles check with the differences of the azimuths for the original sightings from P (Fig. 
15, Row 11).   

Finally, the areas of the four triangles can be calculated from  
 

  
2
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Clockwise from the northern triangle, the areas work out as follows: APB = 13,650 m2, BPC = 
39,305 m2, CPD = 18,902 m2, and DPA = 6565 m2.  These four areas sum to 78,422 m2 
(compare with Figure 16, Cell I 42). 
 
 Significant digits.  As a last consideration, we can think about the number of digits in the 
calculated area.  Cell I42 shows the calculation to 1 m – five significant digits.  Surely, that is 
more digits than are warranted.  Now that we have spreadsheets for the calculations, we can 
easily investigate how many would be appropriate.    
 Suppose that each of the original sightings can be incorrect (inaccurate) by as much as 1°.  
Let's say that they are incorrect in such a way that the corners are moved further away from O 
and P (thus creating a larger quadrilateral).  Any vertex can be pushed away by decreasing the 
triangulation angle at the far corner (OAP in Figure 2).  For the vertices at A and B (Fig 9), this is 
achieved with a counterclockwise rotation of the sighting from O and a clockwise rotation of the 
sighting from P; for the vertices at C and D, it is achieved with a clockwise rotation of the 
sighting from O and a counterclockwise rotation of the sighting from P.  Thus all the corners can 
be moved out by replacing the azimuths in Row 10 of Figure 15 with 9, 29, 141 and 191, and the 
azimuths in Row 11 of Figure 15 with 356, 26, 149, 204.   

The result of these changes is as follows.  The new coordinates (replacing Rows 49 and 
50 of Fig. 15) are: A, (33.240, 209.867); B, (298.5, 538.5); C, (230.3, –284,3); and  D, (–28.5,     
–146.6). (Why does B move so far?)  The new area (in Cell I42 of Figure 16) is 148,276 m2, an 
increase of 85%.  Moving the corners closer in with 1° changes produces an area of 50,054 m2, a 
37% decrease.  Therefore, given a ±1° uncertainty in the original sightings, the area might be 
stated as  m000,70

000,30000,80 +
−

2.   
Clearly, more than one digit misrepresents how well the calculated area is known. Even 

one significant digit implies less uncertainty than is actually present, because 80,000 implies 
80,000 ± 5,000 (Taylor, 1997 and Computation Geology 1, Significant figures!, May 1998). 
 



Concluding Remarks 
 Triangulation is a useful tool for finding locations.  It is also fertile ground to practice 
school algebra and geometry and to explore the consequences of measurement errors.  
Uncertainty in calculated positions can be quite large for distant points (small triangulation 
angles), especially for sightings that make a low angle with the baseline.  The example discussed 
here is artificial in that most people would change the position of the baseline for the sightings to 
B and D so that they could face those points at a better angle.  There are all kinds of relationships 
that can be explored with the spreadsheets of Figures 15 and 16.  
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Appendix 
Bearings, azimuths and the ATAN2(x,y) function 

In geology, there are two conventions for stating direction: bearing and azimuth.  
Bearings are acute angles measured clockwise or counterclockwise from N or S.  For example, 
the bearing N20E is the direction 20° clockwise from N, and N20W is the direction 20° 
counterclockwise from N.  Similarly, S20E indicates a direction 20° counterclockwise from S, 
and S20W indicates a direction 20° clockwise from S.  If you omit the number of degrees, you 
can see immediately the general quadrant of the direction: NE, NW, SE, and SW in these 
examples. 

Azimuths are angles ranging from zero to 360° and are measured clockwise from N.  
Thus, N20E, S20E, S20W, and N20W correspond to azimuths of 20°, 160°, 200°, and 340°, 
respectively.  In practice, azimuths are positive; negative azimuths are frowned upon, although 
an azimuth of -20° can logically be considered the same as an azimuth of 340°.  

In mathematics, the convention is to state the direction of a vector in terms of θ measured 
clockwise from the x-axis.  Negative θ''s are definitely allowed and refer to angles measured 
clockwise (i.e., negatively) from the x-axis.  For map work, it is standard to let the x-axis be E, 
and the y-axis N, so that the map presents a Cartesian coordinate system with north at the top of 
the page.  With that convention, the NE and NW quadrants are indicated by θ >0, and the SW 
and SE quadrants are indicated by θ <0. 
 A useful relation between θ and the azimuth (AZ) is 
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 In using vectors for directed distances on a map, one commonly needs to find the 
direction (θ or AZ) of v from its components, vx and vy.  This inevitably means using the inverse 



tangent (Equation 6b), a.k.a the arctangent function.  There is a problem, however: the tangent 
function repeats itself after 180°, only half of the full circle of map directions.  For example, a 
vector pointing NE (e.g., vx = 1 and vy = 1) has the same tangent (1.000) as a vector pointing SW 
(e.g., vx = -1 and vy = -1).  This means that the inverse tangent does not discriminate between 
opposite quadrants.  If vx/vy is positive and one pushes the arctan key on a calculator, the answer 
will appear as a θ indicating the NE quadrant (θ between 0 and 90°), whether the vector really 
points NE or SW.  Similarly, if vx/vy is negative, the calculator will produce a θ indicating the SE 
quadrant (θ between 0 and -90°), whether v points SE or NW. 
 One can easily sort out the two possibilities by sketching a little figure showing vxi, vyj, 
and their sum, v, and I strongly recommend that students draw such a figure.  Alternatively, one 
can look at the sign of vx.  If vx is negative then v is SW if vx/vy is positive, and NW if vx/vy is 
negative.  If vx is positive, then v is NE if vx/vy is positive, and SE if vx/vy is negative. 
 On a spreadsheet one can avoid the ambiguity of the inverse tangent by using the 
ACTAN2(x,y) function (see spreadsheet example below). The ATAN2 function has two 
arguments, x and y (which, in the case of our vector problems, are vx and vy).  The function is 
programmed to look not only at the ratio of x/y but also at the sign of x.   
 Columns E and F of the spreadsheet example illustrate the advantages to our work of the 
ATAN2 function.  Not only does the ATAN2 avoid the ambiguity of the one-argument ATAN 
function, but it also avoids the nuisance of dividing by zero when vx = 0. 
 Because of Equation A1, one can reverse the arguments in the ATAN2 function and 
produce an angle very much like the azimuth (Column G).  The only "problem" is that it 
produces negative azimuths for the two western quadrants (which really isn't much of a problem 
except by convention).  To avoid negative azimuths, one can use the logic function illustrated in 
the footnote.  This logic function says to add 360° to the result of the ATAN2(vy, vx) for vectors 
in the two western quadrants, otherwise take the result as is.  The 180/3.14159 converts the result 
of the ATAN2(vy, vx) from radians to degrees. 
 
 

 B C D E F G H 
1 direction coordinates  θ "azimuth" azimuth 
2  vx vy ATAN(vx/vy) ATAN2(vx,vy) ATAN2(vy,vx) * footnote 
3     N 0 1        0         90          0             0 
4     NE 1 1       45         45        45           45 
5     E 1 0   #DIV/0!          0        90           90 
6     SE 1 -1     -45        -45      135         135 
7     S 0 -1        0        -90      180         180 
8     SW -1 -1       45      -135     -135         225 
9     W -1 0    #DIV/0!        180       -90         270 
10     NW -1 1     -45        135       -45         315 
11     N 0 1          0          90          0            0 
 
* Cell Formula for H3:  
   IF(C3<0, 360+ATAN2(D3,C3)*180/3.14159, ATAN2(D3,C3)*180/3.14159) 
 
 


